Mark Scheme (Results)

January 2012

GCE Core Mathematics C1 (6663) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code US030304
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- $*$ The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

January 2012

C1 6663

Mark Scheme

Question	Scheme ${ }^{\text {a }}$ Marks
1. (a)	$4 x^{3}+3 x^{-\frac{1}{2}}$ M1A1A1
(b)	$\begin{equation*} \frac{x^{5}}{5}+4 x^{\frac{3}{2}}+C \tag{3} \end{equation*}$ M1A1A1
	Notes
(a) (b)	M1 for $x^{n} \rightarrow x^{n-1}$ i.e. x^{3} or $x^{-\frac{1}{2}}$ seen $1^{\text {st }} \mathrm{A} 1$ for $4 x^{3}$ or $6 \times \frac{1}{2} \times x^{-\frac{1}{2}}$ (o.e.) (ignore any $+c$ for this mark) $2^{\text {nd }} \mathrm{A} 1$ for simplified terms i.e. both $4 x^{3} \underline{\text { and }} 3 x^{-\frac{1}{2}}$ or $\frac{3}{\sqrt{x}}$ and no $+c\left[\frac{3}{1} x^{-\frac{1}{2}}\right.$ is A0 $]$ Apply ISW here and award marks when first seen M1 for $x^{n} \rightarrow x^{n+1}$ applied to y only so x^{5} or $x^{\frac{3}{2}}$ seen. Do not award for integrating their answer to part (a) $1^{\text {st }} \mathrm{A} 1$ for $\frac{x^{5}}{5}$ or $\frac{6 x^{\frac{3}{2}}}{\frac{3}{2}}$ (or better). Allow $1 / 5 x^{5}$ here but not for $2^{\text {nd }} \mathrm{A} 1$ $2^{\text {nd }} \mathrm{A} 1$ for fully correct and simplified answer with $+C$. Allow $(1 / 5) x^{5}$ If $+C$ appears earlier but not on a line where $2^{\text {nd }} \mathrm{A} 1$ could be scored then A 0

Question	Scheme	Marks
2. (a) (b)	$\begin{aligned} & \sqrt{ } 32=4 \sqrt{ } 2 \text { or } \sqrt{ } 18=3 \sqrt{ } 2 \\ & \qquad(\sqrt{32}+\sqrt{18}=) \underline{7 \sqrt{ } 2} \\ & \times \frac{3-\sqrt{ } 2}{3-\sqrt{2}} \text { or } \times \frac{-3+\sqrt{2}}{-3+\sqrt{2}} \text { seen } \\ & {\left[\frac{\sqrt{32}+\sqrt{18}}{3+\sqrt{2}} \times \frac{3-\sqrt{2}}{3-\sqrt{2}}=\right] \frac{a \sqrt{2}(3-\sqrt{2})}{[9-2]} \rightarrow \frac{3 a \sqrt{2}-2 a}{[9-2]} \text { (or better) }} \\ & =3 \sqrt{2},-2 \end{aligned}$	B1 B1 M1 dM1 A1, A1
ALT	$\begin{aligned} & (b \sqrt{ } 2+c)(3+\sqrt{ } 2)=7 \sqrt{ } 2 \text { leading to: } 3 b+c=7, \quad 3 c+2 b=0 \\ & \text { e.g. } \quad 3(7-3 b)+2 b=0 \quad(\text { o.e. }) \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~d} 1 \end{aligned}$
		6 marks
	Notes	
(a)	$1^{\text {st }}$ B1 for either surd simplified $2^{\text {nd }} \mathrm{B} 1$ for $7 \sqrt{ } 2$ or accept $a=7$. Answer only scores B1B1 NB Common error is $\sqrt{32}+\sqrt{18}=\sqrt{50}=5 \sqrt{2}$ this scores B0B0 but can use their get M1M1 $1^{\text {st }}$ M1 for an attempt to multiply by $\frac{3-\sqrt{2}}{3-\sqrt{2}}$ (o.e.) Allow poor use of brackets	$\text { ‘ } 5 \text { " in (b) to }$

$2^{\text {nd }} \mathrm{dM} 1$ for using $a \sqrt{2}$ to correctly obtain a numerator of the form $p+q \sqrt{2}$ where p and q are non-zero integers. Allow arithmetic slips e.g. $21 \sqrt{2}-28$ or $\sqrt{2} \sqrt{2}=,{ }_{k}$
Follow through their $a=7$ or a new value found in (b). Ignore denominator.
Allow use of letter a. Dependent on $1^{\text {st }} \mathrm{M} 1$
So \times is M0 until they reduce $p+q$ ख
$1^{\text {st }} \mathrm{A} 1$ for x or accept $b=3$ from correct working $2^{\text {nd }} \mathrm{A} 1$ for or accept $c=\square_{צ}^{2}$ from correct working

Simultaneous Equations

$1^{\text {st }} \mathrm{M} 1 \quad$ for and forming 2 simultaneous equations. Ft their $a=7$ $2^{\text {nd }}$ dM1 for solving their simultaneous equations: reducing to a linear equation in one variable

$1^{\text {st }}$ A1 for 6 and x seen. Allow $x>6, x>$ etc to score this mark.
Values may be on a sketch.
$2^{\text {nd }}$ M1 for choosing the "outside region" for their critical values. Do not award simply for a diagram or table - they must have chosen their "outside" regions
$2^{\text {nd }}$ A1ft follow through their 2 distinct critical values. Allow "," "or" or a "blank" between answers. Use of "and" is M1A0 i.e. loses the final A1
$\boxed{\text { scores M1A0 }}$ i.e. loses the final A1 but apply ISW if $x>6, x<\square$ has been seen Accept \square (o.e)

Use of \leq instead of < (or \geq instead of $>$) loses the final A mark in (b) unless A mark was lost in (a) for $x \geq 4$ in which case allow it here.

Question

Scheme

4．（a）
x $a+5$［亟
\square

$$
\begin{equation*}
=x \tag{*}
\end{equation*}
$$

	Notes
B1	accept $a 1+5$ or \quad（etc）
M1	must see $a($ their A1cso must have seen $a(a[1]+5)+5$ incorrect working seen

$1^{\text {st }}$ M1 for forming a suitable equation using \times and 41 and an attempt to collec reduce to 3TQ（o．e）．Allow one error in sign．Accept for example \square If completing the square should get to \square
$2^{\text {nd }}$ M1 Attempting to solve their relevant 3 TQ （see General Principles）
A1 for both 4 and x seen．If $a=4$ and x is followed by $x<a<4$ appl， No working or trial and improvement leading to both answers scores $3 / 3$ for only one answer．

Allow use of other letters instead of a

Coordinates must be seen on the diagram. Do not award if only in the bod! "Passing through" means not stopping at and not touching.

 Allow ($0, x$) and $(y, 0)$ if marked on the correct places on the correc$1^{\text {st }}$ B1 for correct shape and passing through origin. Can be assumed if it passe: intersection of axes
$2^{\text {nd }}$ B1 for correct shape and 5 marked on x-axis for \square_{x} shape stopping at both $(5,0)$ and $(0,0)$ award B0B1
$3^{\text {rd }} \mathrm{B} 1$ for a line of positive gradient that (if extended) has no intersection with tl extended). Must have both graphs on same axes for this mark. If no C gi
$4^{\text {th }} \mathrm{B} 1$ for straight line passing through $\square_{\mathrm{y}}^{0.8}$ on x-axis and 2 on y-axis Accept exact fraction equivalents to \qquad

Question	Scheme	Marks
7.		M1A1 M1 A1 A1ft (5) 5 marks
	Notes	
	$1^{\text {st }} \mathrm{M} 1$ for attempt to integrate $1^{\text {st }} \mathrm{A} 1$ all correct, possibly unsimplified. Ignore $+c$ here. $2^{\text {nd }} \mathrm{M} 1$ for using $x=2$ and $\mathrm{f}(2)=10$ to form a linear equation They should be substituting into a changed expressio $2^{\text {nd }} \mathrm{A} 1 \quad$ for $c=\square$ $3^{\text {rd }} \mathrm{A} 1 \mathrm{ft}$ for This mark is dependent on $1^{\text {st }} \mathrm{M} 1$ and $1^{\text {st }} \mathrm{A} 1$ only.	errors.

