Mark Scheme (Results)
June 2011

GCE Core Mathematics C3 (6665) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Examiners' Report that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA027660
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 1 (a)

(b) \& \begin{tabular}{l}
$$
\frac{1}{\left(x^{2}+3 x+5\right)} \times \ldots,=\frac{2 x+3}{\left(x^{2}+3 x+5\right)}
$$

Applying $\frac{v u^{\prime}-u v^{\prime}}{v^{2}}$
$$
\frac{x^{2} \times-\sin x-\cos x \times 2 x}{\left(x^{2}\right)^{2}}=\frac{-x^{2} \sin x-2 x \cos x}{x^{4}}=\frac{-x \sin x-2 \cos x}{x^{3}} \text { oe }
$$

 \&

M1,A1

(2)

M1,

A2,1,0

(3)

5 Marks
\end{tabular}

\hline | $2 \text { (a) }$ |
| :--- |
| (b) | \& | $\begin{aligned} & f(0.75)=-0.18 \ldots \\ & f(0.85)=0.17 \ldots . \end{aligned}$ |
| :--- |
| Change of sign, hence root between $x=0.75$ and $x=0.85$ |
| Sub $x_{0}=0.8$ into $x_{n+1}=\left[\arcsin \left(1-0.5 x_{n}\right)\right]^{\frac{1}{2}}$ to obtain x_{1} |
| Awrt $x_{1}=0.80219$ and $x_{2}=0.80133$ |
| Awrt x ${ }_{3}=0.80167$ | \& | A1 |
| :--- |
| A1 |

\hline (c) \& | $\begin{aligned} & \mathrm{f}(0.801565)=-2.7 \ldots . \times 10^{-5} \\ & \mathrm{f}(0.801575)=+8.6 \ldots \times 10^{-6} \end{aligned}$ |
| :--- |
| Change of sign and conclusion |
| See Notes for continued iteration method | \& | M1A1 |
| :--- |
| A1 |
| (3) |

\hline \& \& 8 Marks

\hline
\end{tabular}

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027660 J une 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

1 (a)

1(b)

Alternative to (b)

M1 Writing $\frac{\cos x}{x^{2}}$ as $\cos x \times x^{-2}$ and applying the product rule. If the formula is quoted, it must be correct and an attempt must be made at both differentials. If the formula is not quoted you must see an expression of the form $x^{-2} \times \pm \sin x+\cos x \times \pm \cdots x^{-3}$

A1 One term of $x^{-2} \times-\sin x+\cos x \times-2 x^{-3}$

A1 Both terms correct Eg. $x^{-2} \times-\sin x+\cos x \times-2 x^{-3}$

Both correct to 1 sf (rounded or truncated), reason and minimal conclusion.
$f(0.75)=$ awrt -0.2 rounded or -0.1 truncated. $f(0.85)=$ awrt 0.2 rounded or 0.1 truncated.
Accept change of sign, hence root. Accept $>0,<0$, therefore true.
NB. A smaller interval is acceptable but the question specifically states [0.75,0.85] so for the M1 (and therefore A1) mark the conclusion must refer back to that interval.

x	$f(x)$
0.75	-0.18339
0.76	-0.14797
0.77	-0.11246
0.78	-0.07689
0.79	-0.04127
0.8	-0.00561
0.81	0.030062
0.82	0.065731
0.83	0.101377
0.84	0.136981
0.85	0.172524

(b) M1 Substitutes $x_{0}=0.8$ into the iterative formula to evaluate x_{1}.
$\sqrt{\arcsin } 0.6$, awrt 0.8 or $6\left({ }^{\circ}\right)$ are examples.

A1 Awrt $x_{1}=0.80219$, and $x_{2}=0.80133$

A1 Awrt $\quad x_{3}=0.80167$

NB. The suffixes are not important. Mark successive answers which could appear as $x_{2} x_{3} X_{4}$
Note that this appears as B1,B1,B1 e-pen
(c) M1 Chooses the end points of the interval [0.801565, 0.801575], or any tighter interval that contains the accurate answer 0.8015726 AND attempts $f(x)$ for both.

A1 Calculates correctly to one figure (rounded or truncated) both $f(0.801565)$ and $f(0.801575)$ or $f(x)$ at the end points of an appropriately tighter interval.
$f(0.801565)=$ awrt- 0.00003 rounded or -0.00002 truncated $f(0.801575)=$ awrt 0.000009 rounded (accept 0.00001 which is correct to 5 dp) or 0.000008 truncated

Both previous marks must have been scored. A reason and (minimal) conclusion must be given. No reference to 5 dp needs to be made.
Acceptable reasons are 'change of sign' $\quad>0,<0$ beside the answers, $\mathrm{f}(\mathrm{a}) . \mathrm{f}(\mathrm{b})<0$
Acceptable conclusions are 'hence root', hence true, QED and \square

Alternatives for (c).

ALT 1 M1 Chooses the end points of the interval [0.801565,0.801575], or any tighter interval that contains the accurate answer 0.8015726 AND attempts $g(x)$ for both where $g(x)= \pm(\sqrt{ }(\arcsin (1-0.5 x)-x)$

A1 Calculates correctly to one figure (rounded or truncated) both g(0.801565) and $g(0.801575)$ or $g(x)$ at the end points of an appropriately tighter interval Typically $g(0.801565)=0.000010537$ and $g(0.801575)=-0.000003358$

A1 Both previous marks must have been scored. A reason which must make reference back to $\mathbf{f}(\mathbf{x})$ and not just $\mathbf{g}(\mathbf{x})$ and (minimal) conclusion must be given. No reference to 5 dp needs to be made.

The question does not stipulate a method for (c) so continued iteration is acceptable as the sequence oscillates

ALT 2 M1 Continued iteration at least as far as x_{7}. Accept for this, statements such as $x_{10}=0.80157$

A1 Awrt $x_{4}=0.801536, x_{5}=0.801587, x_{6}=0.801567$ and $x_{7}=0.801575$ or any two successive values later in the sequence given to at least 6dp

A1 Both previous marks must have been scored. A reason which must state that all values (after x_{7}) round to 0.80157 and a conclusion which must state to 5 dp .

The table below shows values of x_{0} to x_{9}.

X_{0}	0.8
X_{1}	0.802185209
X_{2}	0.80133392
X_{3}	0.801665559
X_{4}	0.801536362
X_{5}	0.801586694
X_{6}	0.801567086
X_{7}	0.801574725
X_{8}	0.801571749
X_{9}	0.801572908

B1 The vertex is on the negative y axis. This is in effect awarding a mark for moving the graph 4 units to the left. Both branches of the graph must cross the x axis

B1 The \mathbf{y} coordinate of ' R ' is at -6 . This is a mark for a stretch of 2 in the y direction. Accept $(-6,0)$ written on the y axis. If in doubt send to review

Note: These marks are independent but must be scored in this order on e- pen.

For example this would score
B1 for the ' V ' shape
B0 vertex is not on the y axis
B1 vertex has a y co ordinate of -6
(b) B1 For a ' W ' shape. Its position does not matter.

B1dep Two vertices on the negative x axis. The W appears in both quadrants 1 and 2 . Ignore any co- ordinates for this mark.

B1 $\quad R^{\prime}$ written/or marked on the graph/ or axes as (-4,3). Do not award if extra R's are given.

For example this (which is $|-f(x)|$ would score
B1 W shape
BO The two vertices are not on the negative x axis
BO R' incorrect

4.(a) M1 A generous mark for an attempt to make x or a swapped y the subject of the formula $y=4-\ln (x+2)$. It must be a full method and cannot finish $x+2=\mathrm{f}(\mathrm{y})$ but you can condone 'poor' algebra.

M1 For applying 'the order of operations' correctly AND knowing that e^{x} and $\ln (\mathrm{x})$ are inverse functions. Condone slips in signs here but you would expect to see

$$
\ln (x+2)= \pm y \pm 4 \text { going to } x+2=e^{ \pm y \pm 4} \text { for this mark. }
$$

Watch for $-\ln (x+2)= \pm y \pm 4$ going to $-(x+2)=e^{ \pm y \pm 4}$. This is MO-incorrect 'In' work.
A1 Obtaining a correct expression for $\mathrm{f}^{-1}(\mathrm{x})$. Eg. $f^{-1}(x) \rightarrow-2+e^{4-x}$ or $-2+e^{-(x-4)}$
It must be in terms of \mathbf{x}, but could be expressed ' $y=$ ' or $f^{-1}: x \rightarrow$
(b) B1 Stating the correct domain.

Accept $x \leq 4,(-\infty, 4]$, Domain is all values (of $x)$ less than or equal to 4 BUT do not accept y or $f^{-1} \leq 4$
(c) M1 For an attempt to substitute g into f. Eg $4-\ln \left(e^{x^{2}}-2+2\right), 4-\ln \left(e^{x^{2}}+2-2\right)$.

A correct answer with no working (or indeed incorrect working) would imply this. Do not accept if there is obvious incorrect working. $4-\ln \left(e^{x^{2}}-2\right)$ is MO.
dM1 Dealing with the 'brackets' first and knowing that In and exp are inverse fn's
Seeing $4-\ln \left(e^{x^{2}}\right)$ leading to 4 - 'a function of x^{\prime} scores this mark
Note: $4-\ln \left(e^{x^{2}}\right)-\ln 2+\ln 2=4-x^{2}$ would lose this mark and score $1,0,0$
This is dependent upon the first M mark being scored.
A1 cso $\{f g(x)\}=4-x^{2}$.
All 3 marks must be awarded if $4-x^{2}$ is reached given that no incorrect working is seen
(d) B1ft Stating the correct range.

Accept $\mathrm{y} \leq 4,(-\infty, 4]$, Range is all values less than or equal to 4 BUT do not accept $\mathrm{x} \leq 4$ This is a follow through on all answers in (b) apart from $x \mathcal{E} \mathcal{R}$ leading to $y \mathcal{E} \mathcal{R}$
5. For the purposes of marking (a) and (b) can be scored together
(a) B1 Stating that $\mathrm{p}=7.5$
(b) M1 Substituting both $\mathbf{m}=\mathbf{2 . 5}$ and $\mathrm{t}=\mathbf{4}$ into $m=p e^{-k t}$ with 'their' p . Eg. $2.5=p e^{-k 4}$,

M1 Dividing by their ' p ' thus arriving at the result $e^{ \pm 4 k}=A$ where A is a constant
dM1 Correct order of operations to make their ‘ $\pm 4 \mathrm{k}^{\prime}$ the subject by takings $\ln ’$. Eg. $\pm 4 \mathrm{k}=\ln A$ This is dependent upon the second M mark

A1 $\left(^{*}\right.$) cso. Completes proof and shows that $k=\frac{1}{4} \ln 3$.

$$
\begin{aligned}
& \text { Possibilities are }-4 k=\ln \left(\frac{1}{3}\right) \Rightarrow-4 k=-\ln (3) \Rightarrow k=\frac{1}{4} \ln 3 \\
& \qquad \text { Or }-4 k=\ln \left(\frac{1}{3}\right) \Rightarrow-4 k=\ln (1)-\ln (3) \Rightarrow-4 k=-\ln (3) \Rightarrow k=\frac{1}{4} \ln 3
\end{aligned}
$$

Note that $e^{-4 k}=\frac{1}{3} \Rightarrow e^{4 k}=3 \Rightarrow 4 \mathrm{k}=\ln 3 \Rightarrow k=\frac{1}{4} \ln 3$ scores full marks But $e^{-4 k}=\frac{1}{3} \Rightarrow-4 k=\ln \left(\frac{1}{3}\right) \Rightarrow k=\frac{1}{4} \ln 3$ scores $1,1,1,0$
(c) M1 Differentiating their expression $m=p e^{ \pm k t}$ to $\frac{d m}{d t}=C e^{ \pm k t}$ where C is a constant

A1ft Correct answer for $\frac{d m}{d t}$ following through on their numerical values of p and k.
For example $m=7.5 e^{\frac{1}{4}(\ln 3) t}$ leading to $\frac{d m}{d t}=\frac{7.5}{4} \ln 3 e^{\frac{1}{4}(\ln 3) t}$ scores M1A1ft
Candidates can put answers in decimals so accept awrt $-2.06 e^{-\frac{1}{4}(\ln 3) t}$
M1 Sets their $\mathrm{dm} / \mathrm{dt}=-0.6 \ln 3$, and rearranges their equation into $e^{ \pm k t}=$ constant
A1 $\quad e^{-k t}=\frac{2.4}{7.5}$ or $\frac{8}{25}$ OR ANY EQUIVALENT with $\mathrm{k}=\frac{1}{4} \ln 3$
dM1 Takes \ln of both sides, leading to a solution of t. This is dependent on the previous M1.
A1 $\quad 4.15$ or awrt 4.1

Alt (b) Candidates can use the given value of $k=\frac{1}{4} \ln 3$ to prove that $\mathrm{m}=2.5$ when $\mathrm{t}=4$ (OR Similar Arguments)
M1 Substitutes $\mathrm{t}=4$ and $k=\frac{1}{4} \ln 3$ into $m==^{\prime} 7.5^{\prime} e^{-k t}$ to get ${ }^{\prime} 7.5^{\prime} e^{-\ln 3}$
M1 Simplifies correctly $e^{-\ln 3}=\frac{1}{3}$. Intermediate step of $\frac{1}{e^{\ln 3}}$ or $e^{\ln 3^{-1}}=3^{-1}$ is required
dM 1 Shows that $\mathrm{m}=2.5$.
A1 Gives a minimal conclusion. Hence $k=\frac{1}{4} \ln 3$ is acceptable.
Alt (b) Candidates take In's of both sides
M1 Substituting both $\mathbf{m}=\mathbf{2 . 5}$ and $\mathbf{t}=\mathbf{4}$ into $m=p e^{-k t}$ with 'their' p . Eg. $2.5=p e^{-k 4}$
M1 Take In's of both sides and correctly use $\ln (\mathrm{ab})=$ Ina+lnb law $E g \cdot \ln (2.5)=\ln \left(7.5 e^{-4 k}\right) \Rightarrow \ln (2.5)=\ln (7.5)+\ln \left(e^{-4 k}\right)$
dM1 Correct order of operations to make ' $\pm 4 \mathrm{k}^{\prime}$ the subject by using Ina-Inb rule Eg $\ln \left(\frac{2.5}{7.5}\right)= \pm 4 k$. This is dependent upon the second M mark.
$\mathrm{A} 1\left(^{*}\right) \quad$ cso. Shows that $k=\frac{1}{4} \ln 3$.
6. (a) M1 Write as a single fraction. Candidates show that they need to combine the terms.

Most often this will appear as $\frac{1-\cos 2 \theta}{\sin 2 \theta}$ but sometimes as $\frac{1-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{2 \sin \theta \cos \theta}$

M1 Use the correct identity for $\sin 2 \theta=(2 \sin \theta \cos \theta)$ and a correct identity for $\cos 2 \theta=\left(\cos ^{2} \theta-\sin ^{2} \theta\right.$ or $2 \cos ^{2} \theta-1$ or $\left.1-2 \sin ^{2} \theta\right)$ in the expression

A1 Reach the expression $\frac{2 \sin ^{2} \theta}{2 \sin \theta \cos \theta}$
A1(*) Cancel down to show both $\frac{\sin \theta}{\cos \theta}$ (or $\frac{\angle \sin ^{2} \theta}{K \sin \theta \cos \theta}$) and $\tan \theta$.
Note: Mixed variables M1M1A0A0 if they use all the way through
M1M1A1A0 if they recover and write down $\frac{2 \sin ^{2} \theta}{2 \sin \theta \cos \theta}$ after both $x^{\prime} \mathrm{s}$ and $\theta \mathrm{s}$
(bi) M1 Substitute $\theta=15$ into part (a) to reach $\tan 15=\frac{1}{\sin 30}-\frac{\cos 30}{\sin 30}$
dM 1 Uses both $\sin 30=\frac{1}{2}$ and $\cos 30=\frac{\sqrt{3}}{2} \quad$ (or $\sin 30=\frac{1}{2}$ and $\tan 30=\frac{1}{\sqrt{3}}$) or $\left(\sin 30=\frac{1}{2}\right.$ and $\left.\cot 30=\sqrt{3}\right)$ or $\operatorname{cosec} 30=2$ and $\cot 30=\sqrt{3}$) in the expression. This is dependent upon the first M1 being scored and is given for an intermediate line.

A1(*) Correct answer given. Note that this is a given solution so check carefully.
(bii) M1 For writing $\tan \mathbf{2 x}=1$. Condone x being replaced by θ or other variables.
A1 Getting one solution of ' $2 x^{\prime}$, most likely to be $45\left({ }^{\circ}\right)$ or one solution of x, likely to be $22.5\left({ }^{\circ}\right)$
M1 Achieving a secondary value of their ' $2 x^{\prime}$ (most likely $4 x$ from a $\tan (4 x)=1$ equation, but it must be for a function of tan. Most likely to be 225 or 405 . This could be implied by a second correct answer

A1 Any two values of $22.5,112.5,202.5,292.5$. Accept equivalents like $\frac{45}{2}$ etc.Accept answers rounding to $23,113,203$ and 293 as some candidates use the double angle tan substitution and solve a quadratic creating accuracy problems

A1 CAO ALL 4 values or equivalents 22.5,112.5,202.5,292.5 and no others inside the range
Notes: Ignore extra solutions outside the range. Radian answers score M1A0M1A1A1 for fully correct solutions of $\frac{\pi}{8}, \frac{5 \pi}{8} \frac{9 \pi}{8}, \frac{13 \pi}{8}$. Two answers in degrees most often scores 4 out of 5 marks-m1a1m1a1a0

Candidates who write down some or all answers without working (or seemingly incorrect working) should be referred to your team leader via review.

Alt for (b). Question is a hence or otherwise so we accept for $b(i)$
M1 $\tan 15=\tan (45-30)=\frac{\tan 45-\tan 30}{1+\tan 45 \tan 30}, \tan 15=\tan (60-45)=\frac{\tan 60-\tan 45}{1+\tan 60 \tan 45}$. Formula must be correct.
dM1 Use the above with both $\tan 45=1$ and $\tan 30=\frac{\sqrt{3}}{3}$ or $\tan 60=\sqrt{3}$
A1 ${ }^{*}$) Correctly rationalises expression by multiplying both numerator and denominator by $1-\frac{\sqrt{3}}{3}$ oe to produce given solution
7. (a) B1 Expresses $x^{2}-9$ as $(x+3)(x-3)$. This could appear later in the solution.

M1 Combines two fractions to form a single fraction.
Condone slips on numerator but both numerators must have been 'adapted'
Note that they could appear separately as $\frac{(4 x-5)\left(x^{2}-9\right)}{(2 x+1)\left(x^{2}-9\right)(x-3)}-\frac{2 x(2 x+1)(x-3)}{\left(x^{2}-9\right)(2 x+1)(x-3)}-$

M1 The single fraction must be of the form $\frac{\text { simplified numerator }}{(2 x+1)(x+3)(x-3)}$
Condone invisible brackets on denominator. If the original denominator was 'quartic' then ($x-3$) must be factorised out of both the numerator and the denominator. The brackets on the numerator must have been removed and the terms simplified

A1
Correct fraction of $\frac{5 x-15}{(2 x+1)(x+3)(x-3)}$ or $\frac{5 x-15}{(2 x+1)\left(x^{2}-9\right)}$ or $\frac{5 x-15}{\left(2 x^{3}+x^{2}-18 x-9\right)}$ is obtained
A1 $\left(^{*}\right.$) Correct solution only. The $(5 x-15)$ must be seen to be factorised and the $(x-3)$ terms cancelled to produce given answer
(b) M1 Using the chain rule or the quotient rule to deal with $\frac{5}{(2 x+1)(x+3)}$ Chain rule look for $((2 x+1)(x+3))^{-2} \times(\ldots \ldots)$ or (their quadratic $)^{-2} \times(\ldots) . \mathrm{NB}(\ldots)$ could be 1 Quotient rule look for $\frac{(2 x+1)(x+3) \times 0-5(\ldots \ldots \ldots)}{((2 x+1)(x+3))^{2}}$. It is not acceptable to have 5 differentiating to be 1 in this method.

M1 The correct method of differentiating ($2 x+1$)($x+3$). It is independent and can be given for an attempt to multiply out and differentiating or use of product rule. Sight of $4 x+7$ is usually sufficient for this mark. Note that this appears as A1 on epen

A1
Correct (unsimplified) answer for $f^{\prime}(x)$ Eg. $\frac{(2 x+1)(x+3) \times 0-5 \times(4 x+7)}{((2 x+1)(x+3))^{2}}$ or $5((2 x+1)(x+3))^{-2} \times(4 x+7)$
M1 Substitutes $x=-1$ into their $f^{\prime}(x)$. Watch out for candidates who sub $x=-\frac{5}{2}$ which gets $f^{\prime}(x)=\frac{15}{4}$. Gradient is $\frac{-15}{4}$ or equivalent (-3.75). Do not accept just this answer for 5 marks! Send to review.

M1 Applies $m_{1}=-\frac{1}{m_{2}}$ for their tangent gradient. It must be numerical. It could appear later
M1 Uses \mathbf{P} and an adapted numerical tangent gradient to find an equation of the normal. Eg. $\left(y--\frac{5}{2}\right)=m_{1}(x-1)$. If formula quoted allow one slip on- $\frac{5}{2}$ or -1 in substitution.

A1 Any correct equation. Eg $y+\frac{5}{2}=\frac{4}{15}(x+1), 8 x-30 y=67, y=\frac{4}{15} x-\frac{67}{30}$
The negatives must have been dealt with
Note: Remember to 'isw' in part (b)

M1 Writes $f(x)$ in the form $\frac{A}{(2 x+1)}+\frac{B}{(x+3)}$ using Partial Fractions. Note that $A=2, B=-1$
M1 Differentiates this expression to a form $\frac{C}{(2 x+1)^{2}}+\frac{D}{(x+3)^{2}}$ Note that $\mathrm{C}=-4$ and $\mathrm{D}=1$
A1 Correct unsimplified answer $\frac{-4}{(2 x+1)^{2}}+\frac{1}{(x+3)^{2}}$

Last 5 marks are identical

Alternative to 7(b) using product rule. First 3 marks are scored

M1 Writes $\mathrm{f}(\mathrm{x})$ as $5(2 x+1)^{-1}(x+3)^{-1}$ and applies vu'+uv'. If the formula is quoted then it must be correct and an attempt made at both differentials. If it is not quoted you would expect to see an expression of the form

$$
5(2 x+1)^{-1} \times \text { Adapted }(x+3)^{-1}+5(x+3)^{-1} \times \text { Adapted }(2 x+1)^{-1}
$$

M1 Applies the correct method for the chain rule on both $(2 x+1)^{-1}$ and $(x+3)^{-1}$ resulting in the forms $(2 x+1)^{-2}(\ldots .$.$) and (x+3)^{-2}(\ldots)$ respectively.

A1 A correct expression for the differential. It does not need to be simplified. A possible solution is $5(2 x+1)^{-1} \times-1(x+3)^{-2}+5(x+3)^{-1} \times-1(2 x+3)^{-2} \times 2$

Last 5 marks are identical

8.(a) M1 Using Pythagoras' Theorem to find R. Accept $R^{2}=2^{2}+3^{2}$.

If α has been found first accept $R=\frac{3}{\sin \alpha}$ or $R=\frac{2}{\cos \alpha}$

A1 $R=\sqrt{ } 13$ or awrt 3.61. Note many candidates just write this down and score $M 1 A 1(\pm \sqrt{13}$ is $A 0)$

M1 For $\tan \alpha= \pm \frac{3}{2}$ or $\tan \alpha= \pm \frac{2}{3}$.
If R is used then ONLY accept $\sin \alpha= \pm \frac{3}{\text { their } R}$ OR $\cos \alpha= \pm \frac{2}{\text { their } R}$

A1 AWRT 0.983. Note that awrt 56.3° would score A0.
(b) M1 Applies the product rule. If the rule is quoted it must be correct. le vu'+uv' and there must have been some attempt to differentiate both terms.
If the rule is not quoted (or implied by their working and the sight of $u, v, u^{\prime}, v^{\prime}$) only accept answers of the form $\cos 3 x \times A e^{2 x}+e^{2 x} \times \pm B \sin 3 x$. (A and B could be 1 for this mark)

A1 Any one term correct
A1 Both terms correct $\cos 3 x \times 2 e^{2 x}+e^{2 x} \times-3 \sin 3 x$
M1 Factorises out the $e^{2 x}$ term from their expression leaving $e^{2 x}(\ldots \ldots \ldots$.
$\mathrm{A} 1\left(^{*}\right) \quad$ CSO. This is a given answer. Minimum requirement is that candidate shows
$e^{2 x}(2 \cos 3 x-3 \sin 3 x)$ and finishes off the 'proof' by writing $=R e^{2 x} \cos (3 x+\alpha)$ with R and α either as 'numbers' from part (a) or letters. Condone degrees. Even accept $=e^{2 x} R \cos (3 x+\alpha)$
(c) M1 For setting $\cos (3 x+$ their $\alpha)=0$. Degrees are condoned for this mark

M1 For setting $3 x+$ their $\alpha=\frac{\pi}{2}$ and proceeding to $\mathrm{x}=\ldots$.. Accept for $\frac{\pi}{2}$ awrt 1.57. Note the candidate must be working in radians

A1 Awrt 0.20. Do not accept degree equivalents, but a candidate who works in degrees and converts to radians achieving awrt 0.20 can score all 3 marks

Alt (c) The question states hence or otherwise so we can accept other solutions
M1 Sets their $\cos 3 x \times A e^{2 x}+e^{2 x} \times \pm B \sin 3 x=0$, cancels or factorises out the $e^{2 x}$ term and reaches an equation of the form $\tan (3 x)=k$

M1 Solves in radians and achieves $x=\frac{\arctan k}{3}$
A1 awrt 0.20. Do not accept degree equivalents

